Table II | | Expt'1 | Theory (based on experimental a_0) | Theory (Born Repulsive term included) | |-------------|----------------------------|---------------------------------------|---------------------------------------| | B_{o}^{T} | 77 kb* | 82.36 kb | 87.06 kb | | B_{o}^{T} | 3.904** | 3.926 | 4.096 | | BoT" | -0.0696kb ⁻¹ ** | -0.0461 kb^{-1} | -0.0441kb ⁻¹ | If, instead, we use the following two conditions $$P=0=-\frac{1}{4\pi r_s^2} \frac{dE}{dr_s}$$ $$B_0 = \frac{1}{12\pi r_s} \frac{d^2E}{dr_s^2}$$ and the extrapolated 0°K value of B_o to determine the value of r_c and the equilibrium value of r_s , we obtain r_s =4.038, r_c =2.047. Again using eq. (4) and (5) to calculate B_o , B_o and B_o , we obtain the results shown in Table III. In the previous calculation the Born repulsive energy due to ion-ion overlap was not considered. It would be interesting to see the effect of adding this term to the total energy. A Huggins-Mayer type expression for the Born repulsive energy ^{*} extrapolated 0°K value ^{195°}K value